3D Graphics as an IT Application
Extended abstract

Julian E Gomez
Research Center for Advanced Computer Science
NASA Ames Research Center
Moffett Field, CA 94035

Introduction

IIl the ComPUter graphlcs WOI'ld there 18 Information Management experience
decades of experience with visualizing data

.
-

but little experience with data management.
In the IT world there is decades of experience
with managing data but very little experience
with visualizing it.

The old days Infarmation
Technology

Frequently a 3D application is the product of
bipolar development, where a company’s
knowledge is incorporated in a database that
has been developed over some time, and the

Visualization experience

Computer
Graphics

knowledge must be transformed to a state

that the 3D application can work with, and then transformed back afterwards to become
part of the knowledge base. Transforming data is an expensive proposition; in many cases
there are economies of scale, but there are no economies of knowledge, i.e. even though a
process is learned, it still has to be executed in full the next time it is needed. It also raises
the problem of the data on one side of the transformation becoming inconsistent with the
data on the other side.

Another issue with transmitting 3D data is which format to use. Some vendors’ formats
have become de facto standards. Some open formats, like VRML, have gained moderate
acceptance, but don’t offer adequate breadth. Only recently has there been an ISO
possibility, with X3D and its derivatives offering a standard and extensible means of
describing 3D data and scenes.

Basics

A scene graph is a directed acyclic graph (“dag”), and an RDBMS is a directed graph
(“digraph”). Since dags are a proper subset of digraphs, then scene graphs can be stored
within an RDBMS. This paper proposes that 3D information constructs be treated as
basic information units, akin to numbers and strings, and discusses some ramifications of
doing so. The idea is significantly more detailed than asset management, where the 3D
constructs are stored as BLOBS — the tables should be designed to represent the nature of
a scene graph, and arcs from the scene graph stored as relations in the tables.



For this paper, we note that, in general, a scene graph or scene graph fragment is a
subgraph when inserted into another graph, so the remainder of the discussion will treat
all of them as subgraphs.

Figure 2 shows a general model of a table storing subgraphs. In general, a node can have
n children, which are shown as a reflexive one-to-many mapping.

subgraph

Figure 2. Table that understands subgraphs.

With scene graph fragments in a database, it is an easy matter to share the subgraphs. In
addition, clients using the same subgraphs will actually be referring to the same pieces of
information, instead of distributed copies of those subgraphs. This also means that there
is an improved abstraction level between server and client, since they are dealing directly
with 3D constructs instead of translated versions of those constructs.

This mechanism has been derived independently of any programming language or 3D
graphics API. The 3D entities are stored as generic constructs. Since all scene graph APIs
have a common theoretical basis, if a client needs a result in a particular language or set
up for a particular API, the translation can be done as part of the query processing.

Subgraph vectorization

A very important possibility arises from storing subgraphs, which is to store the node
structure separately from the parameters to the nodes.

The subgraph is composed of a dataflow network of nodes, and each one of those nodes
has a parameter vector of multiformat data. A vector of all of those vectors forms a state
description of the subgraph. The structure of the subgraph can be stored separately from
the state description, and in addition, multiple state descriptions for that subgraph can be
stored. Figure 3 shows an example subgraph, its structure vector (i.e. row), and multiple
state vectors (also rows).



state

description #1 V11 Vq2 V143 Y

state

description #2 V21 V22 | V23 coe

Figure 3. Storing scene graph vectors and state descriptions.

The advantage of storing the parameter vectors separately from the subgraph is that the
subgraph can be defined once, and then alternate state descriptions loaded rapidly. Just as
photographers will do bracketing of an exposure, the ability to load different state
descriptions allows quick viewing of alternatives. An immediate benefit is in realtime
applications, where it is very expensive to optimize a scene graph. Once it is optimized,
then alternative values can be loaded without disturbing the scene graph.

Another possibility is animation. The state descriptions are tied to points in time, and then
either the database or the client creates interpolated values for the parameter vectors.
Because the 3D constructs are integrated with the knowledge base, this kind of animation
allows more tightly coupled viewing of the overall system behavior; the previously
required back and forth transformations disappear. This is a general benefit; it’s not
limited to just doing animation.



Subgraphs as components

Following from the concept of a subgraph as a basic entity is that they are also
components, in the IT sense of the word. There is a fairly direct relationship between
graph descriptions and functional (i.e. dataflow) descriptions, so a subgraph will quite
likely have a component representation as well.

As an example, a subgraph that performs rotation in an arbitrary plane could be
encapsulated as a component, and that component used later in another subgraph. The
query response would handle expanding the scene graphs as necessary.

The benefit of encapsulating subgraphs as components is that it promotes reuse. With the
subgraphs being more manageable units, they’re easier to incorporate in other subgraphs,
or to be accessed by clients.

Note that this process does not imply modeling every node in the subgraph as its own
component, nor does it assume that the only good representation is one component for the
entire subgraph. The granularity of componentization remains to be studied.

Information access

Having 3D as a basic information unit changes the nature of the information access.
Drilling down and sideways are accepted practices, but 3D allows in addition drilling in
any direction. Furthermore, non-spatial data such as metadata or phase space
representations could be stored as peers to basic information, allowing new ways of
understanding the stored data, which could then be considered drilling in any dimension.

In general, an improved abstraction level between the client and the datastore means that
no bilateral translation will have to be done. Also, since the 3D data is in the datastore
with the business intelligence, the clients don’t have to assemble and match different
parts of information; they are inherently associated.

Example engineering application

As business intelligence moves from being a database to a knowledge base system,
incorporating knowledge management technology, it becomes more important to have
data abstractions at a higher level. A common engineering situation is a CAD/CAM
environment. Parts are designed and managed by a PLM system. However, there is much
more 3D information about a part than its design and history; examples include stress
profiles, systems connectivity, and phase portraits of its failure profile. PLM can address
only so many of these.

The common element among those examples is that they have a direct 3D visualization.
Although it is possible to introduce that data, it’s a significant development effort.
However, with 3D data as a primitive, those elements then become basic information, and
can be incorporated into the part information along with the other data that was defined
earlier.



Future work

Future work includes looking for optimization possibilities, how to identify and describe
dependencies between nodes, and analysis of the best granularity level, i.e. where does it
make sense to treat a scene graph node atomically, as one row in the database. Too fine a
granularity creates tremendous overhead as many rows are fetched and many objects are
created, but too coarse a granularity means there won’t be enough control over the
subgraph.

Summary

As a company’s information base moves from an RDBMS to a knowledge base, 3D
graphics becomes a more important and relevant technology. 3D itself is frequently part
of the information base, but just as importantly, it provides a mechanism to view and
understand the complex relationships between the compound information constructs in a
knowledge base. If 3D is a basic piece of information, the process of storing and
visualizing can leverage from that power to become less complex. Benefits arise from
vectorizing subgraphs to make them more flexible, from encapsulating subgraphs as
components, and from being able to drill in multiple dimensions and information
contexts.

References

X3D — Extensible 3D Specification. Web3D Consortium.

GoOmez, Julian. The Convergence of IT and 3D. Proc. Experiential E-commerce. 2001.




